Neural Networks in R (Part 3 of 4) - Neural Networks on Price Changes in Financial Data

This post is a demonstration using the caret and nnet packages on aggregate Big Five traits per state and political leanings, and a continuation of a series:
This process using a neural net process to train then test on data. The neural net itself would be envisioned as follows:

Initially, the results seemed promising, with a prediction accuracy of ~.85, further analysis revealed that the bulk of accurate predictions were those that had no price change, and that price change classes were often inaccurate. I excluded security types without price change, and the average dropped even further. I then created a loop that calculated test and training data by security type, and those result indicated that the neural net very right and very wrong, for price change state. Only one security seemed remotely predicted, that of PFD.


The code is below, as are some related graphs. Source data cannot be provided.

   
 ################################################  
 # create formula used for all samples  
 ################################################  
   
 #names(Portfolio.df)  
 equation <- as.formula("PriceChange ~ Coupon + Duration + Convexity")  
   
   
 ################################################3  
 # Neural Net with nnet and caret  
 # Filtering comparisons  
 ################################################3  
   
 # load packages  
 library(nnet)  
 library(caret)  
   
 # set parameters for loop  
 secTypes <- unique(Portfolio.df$Sec_Type)  
 numRows <- length(secTypes)  
   
 # create empty data frame, for best performance  
 Filtered.Predictions <- data.frame(SecType = character(numRows), Values = numeric(numRows), HasPriceChange = numeric(numRows), PercentCorrect = numeric(numRows), PercentCorrectNoChange = numeric(numRows), PercentCorrectChange = numeric(numRows), stringsAsFactors = FALSE)  
   
 # loop through parameters and neural net to buil;d results  
 currentRow = 0  
 for (secType in secTypes) {  
   
   currentRow <- currentRow + 1  
   
   # filter data set  
   Portfolio.filtered <- Portfolio.df.preclean[Portfolio.df.preclean$Sec_Type == secType,]  
   #View(Portfolio.df.preclean)  
   
   # only work on assets with price changes  
   if ((sum(ifelse(Portfolio.filtered$PriceChange == 1, 1, 0)) / nrow(Portfolio.filtered)) >= 0.0) {  
   
     # add sec type to result data frame
     Filtered.Predictions$SecType[currentRow] <- secType  
   
     # add number of values to result data frame
     Filtered.Predictions$Values[currentRow] <- nrow(Portfolio.filtered)  
     Filtered.Predictions$HasPriceChange[currentRow] <- (sum(ifelse(Portfolio.filtered$PriceChange == 1, 1, 0)) / nrow(Portfolio.filtered))  
   
     # train  
     Portfolio.filtered.train <- train(equation, Portfolio.filtered, method = 'nnet', linout = TRUE, trace = FALSE)  
   
     # predict  
     Portfolio.filtered.predicted <- predict(Portfolio.filtered.train, Portfolio.filtered)  
   
     # combine  
     Portfolio.filtered.combined <- cbind(Portfolio.filtered.predicted, Portfolio.filtered)  
   
     # calculate correct  
     Portfolio.filtered.combined$predictionBinary <- ifelse(Portfolio.filtered.combined$Portfolio.filtered.predicted >= .5, 1, 0)  
     Portfolio.filtered.combined$Correct <- ifelse(Portfolio.filtered.combined$predictionBinary == Portfolio.filtered.combined$PriceChange, 1, 0)  
     correct <- (sum(Portfolio.filtered.combined$Correct) / length(Portfolio.filtered.combined$Correct))  
   
     # calculate correct, no change  
     Portfolio.filtered.combined.NoChange <- Portfolio.filtered.combined[Portfolio.filtered.combined$PriceChange == 0,]  
     correctNoChange <- (sum(Portfolio.filtered.combined.NoChange$Correct) / length(Portfolio.filtered.combined.NoChange$Correct))  
   
     # calculate correct, change  
     Portfolio.filtered.combined.Change <- Portfolio.filtered.combined[Portfolio.filtered.combined$PriceChange == 1,]  
     correctChange <- (sum(Portfolio.filtered.combined.Change$Correct) / length(Portfolio.filtered.combined.Change$Correct))  
       
     # add percent correct to result  
     Filtered.Predictions$PercentCorrect[currentRow] <- correct  
     Filtered.Predictions$PercentCorrectNoChange[currentRow] <- correctNoChange  
     Filtered.Predictions$PercentCorrectChange[currentRow] <- correctChange  
   }  
 }   

 # display results  
 Filtered.Predictions <- Filtered.Predictions[Filtered.Predictions$HasPriceChange > 0,]  
   
 # plots percent correct for change versus percent correct for no change 
 library(ggplot2)  
 plotPart1 <- ggplot(data = Filtered.Predictions, aes(x = HasPriceChange, y = PercentCorrect))  
 plotpart2 <- plotPart1 + geom_point() + stat_smooth(method = "lm", formula = y ~ x, size = 1)  
 plotpart2 + geom_text(aes(label = SecType), hjust = 0, vjust = 0, nudge_x = -.00, nudge_y = .005, angle=0, size=3) 
 

Popular posts from this blog

Charting Correlation Matrices in R

Neural Networks (Part 4 of 4) - R Packages and Resources

Performance Improvements in R: Vectorization & Memoisation